Subset Selection in Sparse Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Subset Selection for Matrices and Applications

We study the following problem of subset selection for matrices: given a matrix X ∈ Rn×m (m > n) and a sampling parameter k (n ≤ k ≤ m), select a subset of k columns from X such that the pseudoinverse of the sampled matrix has as small a norm as possible. In this work, we focus on the Frobenius and the spectral matrix norms. We describe several novel (deterministic and randomized) approximation...

متن کامل

Image Segmentation using Sparse Subset Selection

In this paper, we present a new image segmentation method based on the concept of sparse subset selection. Starting with an over-segmentation, we adopt local spectral histogram features to encode the visual information of the small segments into high-dimensional vectors, called superpixel features. Then, the superpixel features are fed into a novel convex model which efficiently leverages the f...

متن کامل

Column subset selection via sparse approximation of SVD

Given a real matrix A ∈ Rm×n of rank r, and an integer k < r, the sum of the outer products of top k singular vectors scaled by the corresponding singular values provide the best rank-k approximation Ak to A. When the columns of A have specific meaning, it might be desirable to find good approximations to Ak which use a small number of columns of A. This paper provides a simple greedy algorithm...

متن کامل

Backward sequential elimination for sparse vector subset selection

Selection of a subset of vectors from a larger dictionary of vectors arises in a wide variety of application areas. This problem is known to be NP-hard and many algorithms have been proposed for the suboptimal solution of this problem. The focus of this paper is the development of a backward sequential elimination algorithm wherein, starting from the full dictionary, elements are deleted until ...

متن کامل

Sparse Bayesian Learning Based on an Efficient Subset Selection

Based on rank-1 update, Sparse Bayesian Learning Algorithm (SBLA) is proposed. SBLA has the advantages of low complexity and high sparseness, being very suitable for large scale problems. Experiments on synthetic and benchmark data sets confirm the feasibility and validity of the proposed algorithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2020

ISSN: 1052-6234,1095-7189

DOI: 10.1137/18m1219266